
Name Table
What’s in a name?

Wed, Sep 9, 1992

The VME local station systems have names that are used for analog channels.
They may also have names for binary status bits. For a station with 2K analog
channels, the time to execute the current linear search for a 6-character name can
be 5 ms. This note describes an imple mentation of a generalized name table used
for fast searching of names using a double hashing algorithm.

Initialization
At reset time a table is built that contains all the known names in the system.

Each system table (in non-volatile memory) that houses names of anything is
scanned, and the names are entered into a hashing table. Let each name length be
even and up to 32 characters in length. The name is reduced to a longword and
divided by the number of allocated table entries which is the larger prime
number of a prime pair. In this way, the quotient is an index into the hashing
table. If that entry is examined and found not empty, it is tested for a match
against the search name. If there is a match, the name is already in the table. If
there is no match, the next entry in sequence is examined, using as a sequencing
delta a value obtained by dividing the same dividend by the smaller of the prime
pair and adding 1. (This scheme is called double hashing, as it uses two hashing
functions; it is described by Knuth in his volume on Sorting and Searching.) This
matching procedure is continued in this way until an empty entry is found. Enter
the new data into the empty entry. Only when the table is full will there be no
empty entry found, although the efficiency of this scheme falls off somewhat
before that happens.

Hash table entries
Suppose the information in the entry is 8 bytes as follows:

index ptr to nametypedel

The del byte is a “deleted” flag. The type byte denotes the name type category,
allowing for names of different types to match. The index word is the result data
of a name lookup of a given type. (The most obvious example is an analog chan
nel number.) The ptr to name is the address of a name field in a system table
entry. To allocate room for 8K names, 64K bytes is required for the table. It
should be made rather larger than this to reduce the likelihood of collisions.

To process a request that specifies a name ident, the name table is consulted. If
the hash code points to a non-empty entry, match against the name field pointed
to. If there is no match, continue with the next entry until a match or an an empty
entry is found. In the latter case, there is no match on the name, so the name does

Name Table Wed, Sep 9, 1992 page 2
The returned data has this format:

indexnode#

Insertions and deletions
To enter a new name into the table, follow the procedure described under

Initialization. To delete an entry, the same sequence is followed, but upon
finding an match, mark the entry deleted. It cannot me marked empty, since
doing so may mask further entries in the chain.

Function NTLookup(VAR name: NameType; lng, nameType: Integer;

 VAR index: Integer): Integer;

Function NTInsert(VAR name: NameType; lng, nameType: Integer;

 index: Integer): Integer;

Function NTDelete(VAR name: NameType; lng, nameType: Integer): Integer;

Error return codes: Routine:
 0 No errors
–1 Invalid name table (All) All
–2 #chars must be even and in range 2–32 (All) All
–3 Name not in table NTLookup, NTDelete

–4 Table overflow NTInsert

–5 Duplicate name already in table NTInsert

–6 Bus error. Bad ptr in table entry All

Name changes
When a setting to an analog descriptor is made, a special check is made to

determine whether the setting will result in changing the name field for that
channel. If so, the current name is deleted and the new name added. This can
cause table entries to be used up as entries are deleted, but they can be re-used.
At reset time, rebuilding the table removes such “deleted” entries.

Name table header layout

Name Table Wed, Sep 9, 1992 page 3

NTKEY Name Table Key 'NT'
NTSTRT Offset to first entry
NTMSZ Maximum #entries in table
NTVAC # Vacant entries in table
NTREQS # times NameSrch called (diag)
NTCOLL # collisions during NameSrch (diag)
NTMAXC Max # collisions for a name (diag)
NTLAST Last entry inserted (diagnostic)
NTFOUND Offset to last name match
NTDELET #entries deleted
— spare(1)
NTTIMZ Time to clear table during NTINTZ
NTCNTR Count of 6-char names inserted
NTDUPC Last duplicate 6-char name found
NTDUPL Count of duplicate names
NTTIME Time to enter all 6-char names (0.5 ms)
NTCNT16 Count of 16-char names inserted
NTDCH16 Last duplicate 16-char name found
NTDUP16 Count of duplicate 16-char names
NTTIM16 Time to enter 16-char names (0.5 ms)
— spare(11)
NTTIMT Total time to initialize name table

NTKEY NTSTRT NTMSZ NTVAC

NTREQS NTCOLL NTMAXC NTLAST

NTFOUND NTDELET

NTCNTR NTDUPC NTDUPL NTTIME

NTCNT16 NTDCH16 NTDUP16 NTTIM16

— — — —

— —

— — — NTTIMT

NTTIMZ—

— —

